Wavelet Transforms:one of the important signal processing developments in the last decade

Wavelet transforms have been one of the important signal processing developments in the last decade, especially for the applications such as time-frequency analysis, data compression, segmentation and vision. During the past decade, several efficient implementations of wavelet transforms have been derived. The theory of wavelets has roots in quantum mechanics and the theory of functions though a unifying framework is a recent occurrence. Wavelet analysis is performed using a prototype function called a wavelet. Wavelets are functions defined over a finite interval and having an average value of zero. The basic idea of the wavelet transform is to represent any arbitrary function f (t) as a superposition of a set of such wavelets or basis functions. These basis functions or baby wavelets are obtained from a single prototype wavelet called the mother wavelet, by dilations or contractions (scaling) and translations (shifts). Efficient implementation of the wavelet transforms has been derived based on the Fast Fourier transform and short-length ‘fast-running FIR algorithms’ in order to reduce the computational complexity per computed coefficient.

Digg Google Bookmarks reddit Mixx StumbleUpon Technorati Yahoo! Buzz DesignFloat Delicious BlinkList Furl

More