Enhanced scattering and light localization beyond the diffraction limit due to plasmon resonance in metallic nanoparticles is a well known phenomena and has been applied for a wide range of useful applications including nanoparticle waveguides, bio-sensors and several others. Based on the classical Mie theory it can be shown that by enclosing an active media in a nanoparticle, metallic losses can be overcome and a nanoparticle can be made to radiate by itself. This result can extend the use of plasmonic nanoparticles far beyond the current limitations and pave the way for lossless plasmonic waveguides, energy storage devices and nanolasers. This research aims to investigate, in theory and using numerical techniques, how these applications can be realized.
0 comments: on "Numerical modeling of active plasmonic nanoparticles"
Post a Comment